Chemoreceptors of crustaceans: similarities to receptors for neuroactive substances in internal tissues.
نویسندگان
چکیده
A description is given of crustacean chemosensory systems and the neurophysiological procedures used to study them. Their response properties and tuning characteristics are discussed. A review is then provided of specific crustacean chemoreceptors that are stimulated selectively by either purine nucleotides, taurine, glutamate, or glycine, all of which have neuroactive properties in internal tissues. Two distinctly different types of purinergic chemoreceptors occur on the antennules of the spiny lobster. P1-like chemoreceptors have a potency sequence of AMP greater than ADP greater than ATP greater than adenosine and show a strict structural requirement for the ribose phosphate moiety. P2-like chemoreceptors have a potency sequence of ATP greater than ADP greater than AMP or adenosine and show a broad sensitivity to nucleotide triphosphates with modifications in both the purine and ribose phosphate moieties. Sensilla containing the dendrites of chemosensory neurons also possess an ectonucleotidase(s) that inactivates excitatory nucleotides to yield adenosine which is subsequently internalized by a sensillar uptake system. Narrowly tuned taurinergic chemoreceptors are present on both the antennules and legs of lobsters. Although taurine itself is the most effective stimulant, the taurine analogs hypotaurine and beta-alanine are also very excitatory. Structure-activity studies indicate these chemoreceptors have marked similarities to taurine-sensitive systems in internal tissues of vertebrates. By contrast, comparative studies of glutamatergic chemoreceptors on the legs of lobsters indicate response spectra different from those of the glutamate receptors in lobster neuromuscular junctions and the three classes of excitatory amino acid receptors identified internally in vertebrates. Crustacean chemoreceptors for glycine, ecdysteroids, and pyridine are also described. The hypothesis that receptors for internal neuroactive agents may have originally evolved as external chemoreceptors of primitive aquatic organisms is discussed.
منابع مشابه
Stimulants of Feeding Behavior in Fish: Analyses of Tissues of Diverse Marine Organisms.
Analyses of the free amino acids, quaternary amines, guanido compounds, nucleotides, nucleosides, and organic acids in extracts of tissues from 10 species of marine teleost fishes and 20 species of invertebrates are reported. With multidimensional scaling techniques, the relative concentrations of the above chemicals in fishes, molluscs, and crustaceans are shown to cluster into separate taxon-...
متن کاملOesophageal chemoreceptors of blue crabs, Callinectes sapidus, sense chemical deterrents and can block ingestion of food.
Decapod crustaceans such as blue crabs possess a variety of chemoreceptors that control different stages of the feeding process. All these chemoreceptors are putative targets for feeding deterrents that cause animals to avoid or reject otherwise palatable food. As a first step towards characterizing the chemoreceptors that mediate the effect of deterrents, we used a behavioral approach to inves...
متن کاملEstrogens Receptors-New Players in Spermatogenesis
The mammalian testis is a complex organ that serves two important functions, synthesis of steroids, with significant amount of estrogenic hormones produced and production of spermatozoa. Estrogen receptors (ERs) are expressed in cells of the testis as well as the epididymal epithelium. We have demonstrated that estrogen receptor expression is higher in reproductive tissues as compared to non-re...
متن کاملThe antinociceptive effect of 17β-estradiol in the paragigantocellularis lateralis of male rats is mediated by estrogenic receptors
Introduction: 17β-Estradiol is a neuroactive steroid and its pain modulatory role has been well studied previously. 17β-Estradiol modulates nociception by binding to its receptors and also by allosteric interaction with other membrane - bound receptors such as glutamate and GABAA receptors. Paragigantocellularis lateralis (LPGi) is also involved in pain modulation and perception, in addition...
متن کاملIs the pain modulatory action of 17β-estradiol in locus coeruleus of male rats is mediated by GABAA receptors?
Introduction: Estradiol is a neuroactive steroid, which is found in several brain areas such as locus coeruleus (LC). Estradiol modulates nociception by binding to its receptors and also by allosteric interaction with other membranebound receptors like glutamate and GABAA receptors. LC is involved in noradrenergic descending pain modulation. Methods: In order to study the effect of 17β-estra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 71 شماره
صفحات -
تاریخ انتشار 1987